www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktion |X-Y|
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Verteilungsfunktion |X-Y|
Verteilungsfunktion |X-Y| < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion |X-Y|: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 20.12.2006
Autor: Kody

Aufgabe
Der zufallsvektor (X,y) sei über dem Parallelogramm mit den Ecken (1,0),(1,-2),(-1,0),(-1,2) gleichverteilt. Bestimme P(Y-X>1).

Soweit war das jetzt alles plausibel, und Verteilungsfunktionen von Quadraten bekomm ich sogar richtig heraus.

Nur bei obiger Aufgabe kam ich ins Stocken.
P(Y-X>1)=1-P(Y-X<1).
Somit ist y=x+1.

Jetzt Integration:
[mm] \integral_{x=-1}^{0} \integral_{y=-x-1}^{x+1}{dxdy} [/mm] + [mm] \integral_{x=0}^{1} \integral_{y=-x-1}^{-x+1}{dxdy} [/mm]
Da bekomme ich dann 2t+4 heraus. Eigentlich müsste da doch ein Wert unabhängig von t herauskommen, oder? Habs schon paar mal durchgerechnet, aber find einfach keinen Fehler...

Danke dir/euch!!!

        
Bezug
Verteilungsfunktion |X-Y|: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:54 Do 21.12.2006
Autor: luis52

Hallo Kody,

koenntest du bitte eine neue Frage stellen?
Ich sehe keinen Zusammenhang zur urspruenglichen
Frage.



Bezug
        
Bezug
Verteilungsfunktion |X-Y|: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 21.12.2006
Autor: luis52

Moin Kody,


diesmal kann ich dir so gar nicht folgen. Wo kommt denn auf einmal ein
$t$ her? In keinem deiner Integrale finde ich ein $t$.

Hast du dir eine Skizze gemacht? Es ist $P(Y-X>1)=P(Y> 1+X)$. Zeichne
die Gerade $y=1+x$ in die Skizze ein. Der Ort aller Punkte $(x,y)$ mit
$y>1+x$ ist das linke Dreieck. Somit ist

[mm] $P(Y>1+X)=\int_{-1}^0\int_{1+x}^{1-x}\frac{1}{4}\,dy\,dx=\frac{1}{4}$. [/mm]

Bedenke, dass die Parallelogrammflaeche 4 ist und $(X,Y)$
gleichverteilt ist.

hth                    

Bezug
                
Bezug
Verteilungsfunktion |X-Y|: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Do 21.12.2006
Autor: Kody

Ach sorry, das t sollte ein x sein...

Dann habe ich genau über die falsche Fläche integriert, quasi über die übrigend 3/4 des Parallelogramms.
Dann stellt sich eigentlich nur die Frage, woran ich sehen kann, welche Fläche ich integrieren muss. Denn so eine Gerade teilt meine Fläche ja in 2 unterschiedlich große Bereiche, woher weiß ich welchen ich zu intergrieren habe?...

Danke

Bezug
                        
Bezug
Verteilungsfunktion |X-Y|: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Do 21.12.2006
Autor: luis52

Waehle einen beliebigen Punkt aus "deiner" Flaeche des Parallelogramms. Erfuellt er die Bedingung $y>1+x$? Sicher nicht...

Bezug
                                
Bezug
Verteilungsfunktion |X-Y|: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Do 21.12.2006
Autor: Kody

achso, alles klar!

Noch zu dem 1/4, welches in dem Integral steht: Wo kommt das genau her? Wenn es - wie ich denke - von fx*fy kommt, dann bekomm ich da 1/8 heraus. Mit den Eckdaten für fx[-1,1] und für fy[-2,2] ergäbe sich fx=1/2 und fy=1/4, mutlipliziert 1/8? Also mach ich da noch was falsch?

Dankeschön, echt!

Bezug
                                        
Bezug
Verteilungsfunktion |X-Y|: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Fr 22.12.2006
Autor: luis52

Moin Kody,

du haettest Recht, wenn $X$ und $Y$ unabhaengig waeren. Ich fasse die
Information: "$X$ und $Y$ sind gleichverteilt in dem Parallelogramm" so
auf, dass ihre gemeinsame Dichte dort 1/4 ist und 0 sonst. Die 1/4 kommen
daher, dass die Flaeche des Parallelogramms 4 ist. Du musst dir die
gemeinsame Dichte also wie eine Hochplateau ueber jenem Parallelogramm
vorstellen.

$X$ und $Y$ sind nicht unabhaengig. Besagter Skizze entnehme ich


[mm] $f_y(y)=\int_{-1-y}^1\frac{1}{4}\, dx=\frac{2+y}{4}$ [/mm] fuer [mm] $-2 [mm] $f_y(y)=\int_{-1}^{1-y}\frac{1}{4}\, dx=\frac{2-y}{4}$ [/mm] fuer [mm] $0 und [mm] $f_y(y)=0$ [/mm] sonst.

Weiter ist

[mm] $f_x(x)=\int_{-1-x}^{1-x}\frac{1}{4}\, dy=\frac{1}{2}$ [/mm] fuer $-1<x<1$
und [mm] $f_x(x)=0$ [/mm] sonst.


hth


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]